How do you solve using the completing the square method 2x^2 - 7x - 15 = 02x27x15=0?

1 Answer
Mar 30, 2018

x=-3/2" or "x=5x=32 or x=5

Explanation:

"to use the method of "color(blue)"completing the square"to use the method of completing the square

• " the coefficient of the "x^2" term must be 1" the coefficient of the x2 term must be 1

rArr2(x^2-7/2x-15/2)=02(x272x152)=0

• " add/subtract "(1/2"coefficient of the x-term")^2" to" add/subtract (12coefficient of the x-term)2 to
x^2-7/2xx272x

2(x^2+2(-7/4)xcolor(red)(+49/16)color(red)(-49/16)-15/2)=02(x2+2(74)x+49164916152)=0

rArr2(x-7/4)^2+2(-49/16-15/2)=02(x74)2+2(4916152)=0

rArr2(x-7/4)^2-169/8=02(x74)21698=0

rArr2(x-7/4)^2=169/82(x74)2=1698

rArr(x-7/4)^2=169/16(x74)2=16916

color(blue)"take the square root of both sides"take the square root of both sides

rArrx-7/4=+-sqrt(169/16)larrcolor(blue)"note plus or minus"x74=±16916note plus or minus

rArrx=7/4+-13/4x=74±134

rArrx=7/4-13/4=-3/2" or "x=7/4+13/4=5x=74134=32 or x=74+134=5