How do you solve using the completing the square method 2x^2-8x+3=0?

1 Answer
May 6, 2016

x = 2+-sqrt(10)/2

Explanation:

Complete the square then use the difference of squares identity:

a^2-b^2=(a-b)(a+b)

with a=(2x-4) and b=sqrt(10) as follows.

Multiply by 2 first to make the leading term a perfect square:

0 = 2(2x^2-8x+3)

=4x^2-16x+6

=(2x)^2-2(2x)(4)+6

=(2x-4)^2-16+6

=(2x-4)^2-10

=(2x-4)^2-(sqrt(10))^2

=((2x-4)-sqrt(10))((2x-4)+sqrt(10))

=(2x-4-sqrt(10))(2x-4+sqrt(10))

=(2(x-2-sqrt(10)/2))(2(x-2+sqrt(10)/2))

=4(x-2-sqrt(10)/2)(x-2+sqrt(10)/2)

Hence:

x = 2+-sqrt(10)/2