How do you solve using the completing the square method 2x^2-8x+3=0?
1 Answer
May 6, 2016
Explanation:
Complete the square then use the difference of squares identity:
a^2-b^2=(a-b)(a+b)
with
Multiply by
0 = 2(2x^2-8x+3)
=4x^2-16x+6
=(2x)^2-2(2x)(4)+6
=(2x-4)^2-16+6
=(2x-4)^2-10
=(2x-4)^2-(sqrt(10))^2
=((2x-4)-sqrt(10))((2x-4)+sqrt(10))
=(2x-4-sqrt(10))(2x-4+sqrt(10))
=(2(x-2-sqrt(10)/2))(2(x-2+sqrt(10)/2))
=4(x-2-sqrt(10)/2)(x-2+sqrt(10)/2)
Hence:
x = 2+-sqrt(10)/2