How do you solve using the completing the square method 3x24x2=0?

1 Answer
Aug 6, 2016

x=2103 or x=2+103

Explanation:

Let us divide each term of 3x24x2=0 by 3, we get

x243x23=0

Now recalling the identity (xa)2=x22ax+a2 and comparing it with x243x, we need to add and subtract (43×2)2 to complete square. Hence x243x23=0 is

x22×46x+(46)2(46)223=0 or

(x+46)2(23)223=0 or

(x+23)24969=0 or

(x+23)2109=0 or

(x+23)2(103)2=0 or

(x+23+103)(x+23103)=0

Hence, x+23+103=0 or x+23103=0

i.e. x=2103 or x=2+103