How do you solve using the completing the square method x^2+2x-5=0?

1 Answer
Aug 6, 2016

x=-1-sqrt6 or x=-1+sqrt6

Explanation:

x^2+2x-5=0

Now, recalling the identity (x+a)^2=x^2+2ax+a^2 and comparing it with x^2+2x, we need to add and subtract (2/1)^2 to complete square. Hence x^2+2x-5=0 is

x^2+2x+1-1-5=0 or

(x^2+2x+1)-6=0 or

(x+1)^2-(sqrt6)^2 or

(x+1+sqrt6)(x+1-sqrt6)=0

i.e. x=-1-sqrt6 or x=-1+sqrt6