How do you solve using the completing the square method x2+3x10=0?

1 Answer
Apr 13, 2016

yintercept=10

Vertex(x,y)(32,494)

xintercepts=5or+2

Explanation:

Given: x2+3x10=0.......................(1)

Determine yintercept

Read directly from equation (1)

yintercept=10

'~~~~~~~~~~~~~ Tip! ~~~~~~~~~~~~~~~~~~~~
As the equation is already in the form

y=a(x2+bax)+c

In this case a=1

xvertex=(12)×ba=32

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Step 1
Write equation (1) as (x2+3x)10=0

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Step 2

Add the adjustment constant k
(x2+3x)10+k=0

'~~~~~~~~~~~~~~~~~~~~~~~~~~~
Step 3
Move the power from x2 to outside the bracket
(x+3x)210+k=0
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Step 3

Remove the x from 3x
(x+3)210+k=0

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Step 4

Multiply the 3 inside the bracket by 12
(x+32)210+k=0
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Step 4
If we multiply out the bracket we end up with an additional term to those in the original equation. That term is (32)2 derived from (?+32)(?+32)=(32)2. This term must be removed which is achieved by making k=(32)2

So now we have

(x+32)210+k=0(x+32)210(32)2=0

Completing the square (x+32)2494=0......................(2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Vertex(x,y)(32,494)

From equation (2)

(x+32)2=494

Square rooting both sides

x+32=±494

xintercepts=32±72=-5 or +2)#
Tony B