How do you solve using the completing the square method x^2 - 5x = 0x25x=0?

2 Answers
Feb 1, 2017

I tried this:

Explanation:

We can try by adding and subtracting: 25/4254:
x^2-5x+color(red)(25/4-25/4)=0x25x+254254=0
rearrange:
x^2-5x+25/4=25/4x25x+254=254
Compact it:
(x-5/2)^2=25/4(x52)2=254
and...
x-5/2==+-sqrt(25/4)=+-5/2x52==±254=±52
Two solutions:
x_1=5/2+5/2=10/2=5x1=52+52=102=5
x_2=5/2-5/2=0x2=5252=0

Feb 1, 2017

color(brown)("Solution method given in a lot of detail")Solution method given in a lot of detail
The actual process is a lot faster than I have written.

Vertex ->(x,y)=(5/2,-25/4)(x,y)=(52,254)
y_("intercept")=0yintercept=0

x_("intercpts" )=0" and "5xintercpts=0 and 5

Explanation:

color(brown)("It is important that you also look at the general case")It is important that you also look at the general case

Taking it one step at a time: and making it paralleled to the standard form of: y=ax^2+bx+cy=ax2+bx+c

The process introduces an error which is canceled out by the inclusion of the correction factor

Let the correction factor be kk

color(blue)("Step 1 - Group the values ")
"Given: "x^2-5x=0" "color(red)(|)" "ax^2+bx+c=0
Write as " "(x^2-5x)+k=0 " "color(red)(|)" "a(x^2+b/ax)+c+k=0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Step 2: Take the power outside the bracket")

" "(x-5x)^2+k=0 " "color(red)(|)" "a(x+b/ax)^2+c+k=0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 3: Remove the "x" from "5x)

" "(x-5)^2+k=0 " "color(red)(|)" "a(x+b/a)^2+c+k=0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 4: Halve the 5")

" "(x-5/2)^2+k=0 " "color(red)(|)" "a(x+b/(2a))^2+c+k=0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 5: Correct the introduced error")

The error comes from the color(red)(a)color(green)(xx(+b/(2a))^2 bit

" "(x-5/2)^2+k=0 " "color(red)(|)" "color(red)(a)(xcolor(green)(+b/(2a)))^(color(green)(2))+c+k=0

So the correction is:
" "color(green)(color(red)(1)xx(-5/2)^2)+k=0" "color(red)(|)" "color(red)(a)color(green)(xx(b/(2a))^2)color(black)(+k=0)

k+25/4=0" "=>" "k=-25/4

So by substitution we have:

(x-5/2)^2+k=0" "->(x-5/2)^2-25/4=0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine key points of the graph")

The coefficient of x^2 is +1 so the graph is of general shape uu thus the vertex is a minimum

x_("vertex")=(-1)xx(-5/2)=+5/2
y_("vertex")=-25/4

The general equation of y=ax^2+bx+c -> c=0
So y_("intercept")=c=0

.......................................................
color(brown)("Determine "x_("intercepts")

Write as: (x-5/2)^2=25/4

Square root both sides

x-5/2=+-5/2

x=5/2+-5/2

x_("intercepts")=0" and 5