How do you solve using the completing the square method x^2+8x+15=0x2+8x+15=0?

1 Answer
Apr 11, 2016

The solutions for the equation are:
color(green)(x = - 3 x=3 , color(green)(x = -5x=5

Explanation:

x^2 + 8x + 15 = 0x2+8x+15=0

x^2 + 8x = -15x2+8x=15

To write the Left Hand Side as a Perfect Square, we add 16 to both sides:

x^2 + 8x + 16 = - 15 + 16x2+8x+16=15+16

x^2 + 2 * x * 4 + 4^2 = 1 x2+2x4+42=1

Using the Identity color(blue)((a+b)^2 = a^2 + 2ab + b^2(a+b)2=a2+2ab+b2, we get

(x+4)^2 = 1(x+4)2=1

x + 4 = sqrt1x+4=1 or x +4 = -sqrt 1x+4=1

x = sqrt 1 - 4x=14 or x = -sqrt 1 - 4x=14

x = 1 - 4x=14 or x = -1 - 4x=14

color(green)(x = - 3 x=3 or color(green)(x = -5x=5