How do you solve x^2+4x+29=0 by completing the square?

1 Answer
May 6, 2016

color(green)(x = 5i - 2 , color(green)(x = -5i -2

Explanation:

x^2 + 4x + 29 = 0

x^2 + 4x = - 29

To write the Left Hand Side as a Perfect Square, we add 4to both sides:

x^2 + 4x + 4 = - 29 + 4

Using the Identity color(blue)((a+b)^2 = a^2 + 2ab + b^2, we get
(x+2)^2 = -25

x + 2 = sqrt(-25) , x + 2 = -sqrt(-25)

x + 2 = sqrt(- 1 * 25), x + 2 = -sqrt(-1 * 25)

x + 2 = i * 5 , x + 2 = - i * 5

x + 2 = 5i , x + 2 = -5i

color(green)(x = 5i - 2 , color(green)(x = -5i -2