How do you solve x^2 - 8x - 20 = 0x28x20=0 by completing the square?

2 Answers
May 14, 2016

x=10x=10 or x=-2x=2

Explanation:

In addition to completing the square we can use the difference of squares identity:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

with a=(x-4)a=(x4) and b=6b=6 as follows:

0 = x^2-8x-200=x28x20

=(x-4)^2-4^2-20=(x4)24220

=(x-4)^2-16-20=(x4)21620

=(x-4)^2-36=(x4)236

=(x-4)^2-6^2=(x4)262

=((x-4)-6)((x-4)+6)=((x4)6)((x4)+6)

=(x-10)(x+2)=(x10)(x+2)

So x=10x=10 or x=-2x=2

May 14, 2016

x=10, -2x=10,2

Explanation:

color(red)("We know that " (a+b)^2=a^2 +2ab+b^2We know that (a+b)2=a2+2ab+b2

color(red)("And "(a-b)^2=a^2 -2ab+b^2And (ab)2=a22ab+b2

x^2-8x-20=0x28x20=0

This can be written as x^2+(2xx x xx-4)-20=0x2+(2×x×4)20=0

Let a=xa=x and b=-4b=4

color(red)("Now, " (x-4)^2=x^2 -8x+16Now, (x4)2=x28x+16

x^2-8x-20=0x28x20=0

x^2-8x=20x28x=20

Add 16 to both sides:

x^2-8xcolor(red)(+16)=20color(red)(+16)x28x+16=20+16

(x-4)^2=36(x4)2=36

We know that 36=6^2 " and " 36=-6^2 36=62 and 36=62

Find the square root of both the sides:

x-4=+-6x4=±6

When, x-4=6x4=6

Add 4 to both sides:

x-4color(red)(+4)=6color(red)(+4)x4+4=6+4

x=10x=10

When, x-4=-6x4=6

Add 4 to both sides:

x-4color(red)(+4)=-6color(red)(+4)x4+4=6+4

x=-2x=2