How do you solve x+y=1 and 2x-y=2?

1 Answer
Oct 4, 2015

Add the two equations together to get #3x=3#, hence #x = 1#, then substitute this value of #x# into the first equation to find #y = 0#.

Explanation:

If we add the two equations together, the left hand side becomes:

#x+y+2x-y = 3x#

and the right hand side becomes:

#1 + 2 = 3#

So #3x = 3#.

Divide both sides by #3# to get #x = 1#.

Then substituting this value for #x# in the first equation, we get:

#1 + y = 1#

Subtracting #1# from both sides we get:

#y = 1 - 1 = 0#