How do you take the derivative of cos(tan x)cos(tanx)?

1 Answer
Apr 18, 2018

-sin(tan(x))sec^2(x)sin(tan(x))sec2(x)

Explanation:

Use the chain rule, which states that,

dy/dx=dy/(du)*(du)/dxdydx=dydududx

Let u=tan(x),:.(du)/dx=sec^2(x)

Then y=cos(u),:.dy/(du)=-sin(u)

Combining, we get:

dy/dx=-sin(u)*sec^2(x)

=-sin(u)sec^2(x)

Substitute back u=tan(x) to get the final answer:

=-sin(tan(x))sec^2(x)