How do you take the derivative of #tan^ -1(3x^2)#?
1 Answer
Jun 23, 2018
Explanation:
#"differentiate using the "color(blue) "chain rule"#
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#"noting that "d/dx(tan^-1x)=1/(1+x^2)#
#d/dx(tan^-1(3x^2))#
#=1/(1+(3x^2)^2)xxd/dx(3x^2)#
#=(6x)/(1+9x^4)#