How do you take the derivative of tan105x?

1 Answer
Jun 17, 2015

Consider the regular derivative of tanu.

ddx[tanu]=sec2u(dudx)

Since u(x)=5x and we have a power function:

ddx[(tanu)n]=n(tanu)n1sec2u(dudx)

ddx[(tan(5x))10]=10(tan(5x))9sec2(5x)5

=50tan9(5x)sec2(5x)