How do you take the derivative of #tan(4x)^tan(5x)#? Calculus Differentiating Trigonometric Functions Derivative Rules for y=cos(x) and y=tan(x) 1 Answer maganbhai P. Jun 19, 2018 #(dy)/(dx)=y{(4tan(5x))/(sin(4x)cos(4x))+5sec^2(5x)lntan(4x)}# Explanation: Let, #y=tan(4x)^tan(5x)# Taking natural log. ,both sides #lny=lntan(4x)^tan(5x)# #lny=tan(5x)*lntan(4x)# Diff.w.r.t #x# ,Using Product Rule: #1/y(dy)/(dx)=tan(5x)d/(dx)(lntan(4x))+lntan(4x)d/(dx)(tan(5x))# #1/y(dy)/(dx)=tan(5x)*4/tan(4x)sec^2(4x)+lntan(4x)5sec^2(5x)# #1/y(dy)/(dx)=4tan(5x)cos(4x)/sin(4x)xx1/cos^2(4x)+5sec^2(5x)lnt an(4x)# #1/y(dy)/(dx)=(4tan(5x))/(sin(4x)cos(4x))+5sec^2(5x)lntan(4x)# #(dy)/(dx)=y{(4tan(5x))/(sin(4x)cos(4x))+5sec^2(5x)lntan(4x)}# Answer link Related questions What is the derivative of #y=cos(x)# ? What is the derivative of #y=tan(x)# ? How do you find the 108th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x)# from first principle? How do you find the derivative of #y=cos(x^2)# ? How do you find the derivative of #y=e^x cos(x)# ? How do you find the derivative of #y=x^cos(x)#? How do you find the second derivative of #y=cos(x^2)# ? How do you find the 50th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x^2)# ? See all questions in Derivative Rules for y=cos(x) and y=tan(x) Impact of this question 2116 views around the world You can reuse this answer Creative Commons License