How do you take the derivative of tan(sinx)?

1 Answer
Jul 15, 2015

ddxtan(sinx)=cosxsec2(sinx)

Explanation:

For this we can use the chain rule: ddxtan(sinx)=dsinxdxddsinxtan(sinx)=cosxddsinxtan(sinx)

tanx=sinxcosx, so ddxtanx=cos2x+sin2xcos2x=1cos2x=sec2x, using the quotient rule and some trigonometric identities.

Therefore we find ddxtan(sinx)=cosxsec2(sinx).