How do you take the derivative of y=tan2(2x)?

1 Answer
Aug 28, 2015

Use the power rule, the derivative of tangent and the chain rule (twice).

Explanation:

y=tan2(2x)

First, remember the convention for trigonometric functions:

y=tan2(2x)=(tan(2x))2

So the outermost function is the square. Use the power and chain rules to get:

dydx=2(tan(2x))ddx(tan(2x))

=2tan(2x)sec2(2x)ddx(2x)

=2tan(2x)sec2(2x)(2)

=4tan(2x)sec2(2x)