How do you use a half-angle formula to simplify #tan 105#?

2 Answers
Jun 11, 2015

A derivation for #tan(x/2)# is at the bottom.

#tan(x/2) = pmsqrt((1-cosx)/(1+cosx))#

depending on the quadrant of #105^o# (quadrant II, thus the horizontal axis #< 0# on the unit circle).

#tan 105^o = tan ((7pi)/12) = tan (1/2*(7pi)/6) = -sqrt((1-cos((7pi)/6))/(1+cos((7pi)/6)))#

#= -sqrt((1+sqrt3/2)/(1-sqrt3/2))#

#= -sqrt(((2+sqrt3)/2)/((2-sqrt3)/2))#

#= -sqrt((2+sqrt3)/(2-sqrt3))#

#= -sqrt((2+sqrt3)^2/((2-sqrt3)(2+sqrt3)))#

#= -sqrt((2+sqrt3)^2)/(1)#

And since we already specified the quadrant, there's no need for #pm# (and #2 + sqrt3 > 0# of course).

#= -(2 + sqrt3)#

#= -2 - sqrt3#


You can derive the half-angle formula if you don't remember it.
#sin^2(x) = (1-cos(2x))/2#

Similarly:

#sin^2(x/2) = (1-cos(x))/2#

Thus:

#|sin(x/2)| = sqrt((1-cosx)/2)#

Similarly:

#cos^2(x) = (1+cos(2x))/2#

#cos^2(x/2) = (1+cosx)/2#

#|cos(x/2)| = sqrt((1+cosx)/2)#

Now we can divide them.

#|sin(x/2)/(cos(x/2))| = |tan(x/2)| = sqrt((1-cosx)/2) / sqrt((1+cosx)/2)#

#= sqrt((1-cosx)/(1+cosx))#

Jun 12, 2015

Simplify tan 105
Use trig identity:# tan (a + b) = (tan a + tan b)/(1 - tan a. tan b)#

Explanation:

tan 105 = tan (45 + 60)

tan 45 = 1 ; tan 60 = sqrt3

#tan 105 = (1 + sqrt3)/(1 - sqrt3)#