How do you use a half-angle formula to simplify #tan 195#?

1 Answer
Jun 15, 2015

#tan(195^o) = tan(390^o/2)#

The identity you need is:

#tan(x/2) = pmsqrt((1-cosx)/(1+cosx))#
#+# if quadrant I or III
#-# if quadrant II or IV

It's derived from:

#sin(x/2) = pmsqrt((1-cosx)/2)#
#+# if quadrant I or II
#-# if quadrant III or IV

#cos(x/2) = pmsqrt((1+cosx)/2)#
#+# if quadrant I or IV
#-# if quadrant II or III

Divide the quadrant conditions to get the sign you need. #tan390^o = tan30^o#, so you're in quadrant I. Thus, no matter what, the sign of the answer is positive.

#tan(390^o/2) = sqrt((1-cos390^o)/(1+cos390^o))#

#= sqrt((1-cos30^o)/(1+cos30^o))#

#= sqrt((1-sqrt3/2)/(1+sqrt3/2))#

Get common denominators:
#= sqrt(((2-sqrt3)/2)/((2+sqrt3)/2))#

Cancel:
#= sqrt((2-sqrt3)/(2+sqrt3))#

Multiply by the conjugate of the denominator:
#= sqrt(2-sqrt3)/sqrt(2+sqrt3)*sqrt(2-sqrt3)/sqrt(2-sqrt3)#

Simplify:
#= (2-sqrt3)/sqrt(2^2-(sqrt3)^2)#

#= (2-sqrt3)/sqrt(1)#

#= 2-sqrt3#