How do you use a Power Series to estimate the integral int_0^0.01sin(sqrt(x))dx0.010sin(x)dx ?

1 Answer
Sep 21, 2014

Since

sinx=sum_{n=0}^infty(-1)^n{x^{2n+1}}/{(2n+1)!}sinx=n=0(1)nx2n+1(2n+1)!,

we have

sin(sqrt{x})=sum_{n=0}^infty{(-1)^n(sqrt{x})^{2n+1}}/{(2n+1)!}=sum_{n=0}^infty{(-1)^nx^{n+1/2}}/{(2n+1)!}sin(x)=n=0(1)n(x)2n+1(2n+1)!=n=0(1)nxn+12(2n+1)!

Now, consider the integral in question.

int_0^{0.01}sin(sqrt{x})dx=int_0^{0.01}sum_{n=0}^infty{(-1)^nx^{n+1/2}}/{(2n+1)!}dx0.010sin(x)dx=0.010n=0(1)nxn+12(2n+1)!dx

by integrating term by term,

=sum_{n=0}^infty[{(-1)^nx^{n+3/2}}/{(2n+1)!(n+3/2)}]_0^{0.01}=n=0(1)nxn+32(2n+1)!(n+32)0.010

={(0.01)^{3/2}}/{1!cdot3/2}-{(0.01)^{5/2}}/{3!cdot 5/2}+{(0.01)^{7/2}}/{5!cdot 7/2}-cdots=(0.01)321!32(0.01)523!52+(0.01)725!72

={2(0.1)^3}/{3cdot 1!}-{2(0.1)^5}/{5cdot 3!}+{2(0.1)^7}/{7cdot 5!}-cdots=2(0.1)331!2(0.1)553!+2(0.1)775!

By adding a few terms of the above series, we can approximate the value of the original definite integral.