#z = 1 - i# will be in 4th quadrant of argand diagram. Important to note for when we find the argument.
#r = sqrt(1^2 + (-1)^2) = sqrt(2)#
#theta = 2pi - tan^(-1)(1) = (7pi)/4 = -pi/4#
#z = r(costheta + isintheta)#
#z^n = r^n(cosntheta + isinntheta)#
#z^12 = (sqrt(2))^12(cos(-12pi/4) + isin(-12pi/4))#
#z^12 = 2^(1/2*12)(cos(-3pi) + isin(-3pi))#
#z^12 = 2^6(cos(3pi) - isin(3pi))#
#cos(3pi) = cos(pi) = -1#
#sin(3pi) = sin(pi) = 0#
#z^12 = -2^6 = -64#