How do you use half angle formula to find tan 15?

2 Answers
Mar 27, 2018

tan(15^circ)=sqrt(3)tan(15)=3

Explanation:

Half angle formulae for (tan(theta))/2tan(θ)2

color(white)("XXX")=(sin(theta))/(1+cos(theta))color(white)("xxxxxxxx")XXX=sin(θ)1+cos(θ)xxxxxxxx[1]

color(white)("XXX")=(cos(theta))/(1-sin(theta))color(white)("xxxxxxxx")XXX=cos(θ)1sin(θ)xxxxxxxx[2]

color(white)("XXX")=+-sqrt(1-cos(theta))/(1+cos(theta))color(white)("xxxx")XXX=±1cos(θ)1+cos(θ)xxxx[3]

Since sin(30^circ)=1/2color(white)("xx")sin(30)=12xxandcolor(white)("xx")cos(30^circ)=sqrt(3)/2xxcos(30)=32

We can use [2] (for example) to get
tan(15^circ)=tan((30^circ)/2)=((sqrt(3)/2))/((1-1/2))=sqrt(3)tan(15)=tan(302)=(32)(112)=3

Mar 28, 2018

tan 15 = (2 - sqrt3)

Explanation:

Use the half angle formula:
tan (a/2) = (1 - cos a)/sin atan(a2)=1cosasina
In this case --> tan (a/2) = tan 15tan(a2)=tan15 --> cos a = cos 30 = sqrt3/2cosa=cos30=32
--> sin a = sin 30 = 1/2sina=sin30=12.
The formula becomes:
tan 15 = (1 - sqrt3/2)/(1/2) = 2 - sqrt3tan15=13212=23
Check by calculator.
2 - sqrt3 = 2 - 1.732 = 0.26723=21.732=0.267
tan 15 = 0.267. Proved.