How do you use half angle formula to find tan 15?

2 Answers
Mar 27, 2018

#tan(15^circ)=sqrt(3)#

Explanation:

Half angle formulae for #(tan(theta))/2#

#color(white)("XXX")=(sin(theta))/(1+cos(theta))color(white)("xxxxxxxx")#[1]

#color(white)("XXX")=(cos(theta))/(1-sin(theta))color(white)("xxxxxxxx")#[2]

#color(white)("XXX")=+-sqrt(1-cos(theta))/(1+cos(theta))color(white)("xxxx")#[3]

Since #sin(30^circ)=1/2color(white)("xx")#and#color(white)("xx")cos(30^circ)=sqrt(3)/2#

We can use [2] (for example) to get
#tan(15^circ)=tan((30^circ)/2)=((sqrt(3)/2))/((1-1/2))=sqrt(3)#

Mar 28, 2018

tan 15 = (2 - sqrt3)

Explanation:

Use the half angle formula:
#tan (a/2) = (1 - cos a)/sin a#
In this case --> #tan (a/2) = tan 15# --> #cos a = cos 30 = sqrt3/2#
--> #sin a = sin 30 = 1/2#.
The formula becomes:
#tan 15 = (1 - sqrt3/2)/(1/2) = 2 - sqrt3#
Check by calculator.
#2 - sqrt3 = 2 - 1.732 = 0.267#
tan 15 = 0.267. Proved.