tan(5pi) -= tan(pi) = 0tan(5π)≡tan(π)=0
and there is no point in using the half angle formula to evaluate
(tan(5pi))/12tan(5π)12
Therefore, let's assume that you really want to evaluate
tan((5pi)/12)tan(5π12)
Half angle formula (for tan):
tan^2(theta/2) = (1-cos(theta))/(1+cos(theta))tan2(θ2)=1−cos(θ)1+cos(θ)
tan^2((5pi)/12) = tan(((5pi)/6)/2)tan2(5π12)=tan(5π62)
=(1-cos(pi/6))/(1+cos(pi/6))=1−cos(π6)1+cos(π6)
= (1+sqrt(3)/2)/(1-sqrt(3)/2)=1+√321−√32
= (1+sqrt(3)/2)^2/(1-3/4)=(1+√32)21−34
= 4(1+sqrt(3)/2)^2=4(1+√32)2
That is
tan^2((5pi)/12) = (2(1+sqrt(3)/2))^2tan2(5π12)=(2(1+√32))2
Since (5pi)/125π12 is in Quadrant 1, the tan is positive
and
tan((5pi)/12) = 2+sqrt(3)tan(5π12)=2+√3