We have , #sin(pi/6)=sin30^circ=1/2#
Now , #theta=pi/12=15^circto1^(st)Quadrant#
#"Using"color(blue)" half angle formula :"#
#color(blue)(cos^2 (theta/2)=(1+costheta)/2=(1+sqrt(1-sin^2theta))/2#
Let , #theta=30^circ=>theta/2=15^circto1^(st)Quadrant#
#:.cos^2 15^circ=(1+sqrt(1-sin^2 30^circ))/2#
#:.cos^2 15^circ=(1+sqrt(1-1/4))/2#
#:.cos^2 15^circ=(1+sqrt3/2)/2=(2+sqrt3)/4=(4+2sqrt3)/8#
#:.cos^2 15^circ#=#(3+1+2sqrt3)/8#=#((sqrt3)^2+2(sqrt3)(sqrt1)+(sqrt1)^2)/8#
#:.cos^2 15^circ=(sqrt3+1)^2/(4xx2)#
#:.cos15^circ=(sqrt3+1)/(2sqrt2)......to[because1^(st)Quadrant]#
#:.cos15^circ=(sqrt3+1)/(2sqrt2) xxsqrt2/sqrt2=(sqrt6+sqrt2)/4#
#color(green)(-pi/12=-15^circtoIV^(th)Quadrant =>cos(-pi/12) > 0#
#:.color(red)(cos(-pi/12)=+cos(pi/12)=(sqrt6+sqrt2)/4#
For #sin(-pi/12)# , please see next answer.