Heron's formula for area of triangle is:
A = sqrt(s(s-a)(s-b)(s-c)A=√s(s−a)(s−b)(s−c), where ss is the semi-pertimeter.
=>s=(a+b+c)/2⇒s=a+b+c2
Here, a=14a=14, b=16b=16 and c=17c=17.
First find ss:
s=(a+b+c)/2s=a+b+c2
=(14+16+17)/2=47/2=14+16+172=472
Now to calculate the area:
A = sqrt(s(s-a)(s-b)(s-c)A=√s(s−a)(s−b)(s−c)
= sqrt(47/2(47/2-14)(47/2-16)(47/2-17)=√472(472−14)(472−16)(472−17)
= sqrt(47/2((47-28)/2)((47-32)/2)((47-34)/2)=√472(47−282)(47−322)(47−342)
= sqrt(47/2(19/2)(15/2)(13/2)=√472(192)(152)(132)
=sqrt((47xx19xx15xx13)/16)=√47×19×15×1316
=1/4sqrt(47xx19xx15xx13)=14√47×19×15×13
=1/4sqrt(174135)=14√174135
=1/4xx417.294=14×417.294
=104.324=104.324