How do you use Heron's formula to determine the area of a triangle with sides of that are 14, 16, and 17 units in length?

1 Answer
Apr 10, 2016

=104.324=104.324 square units

Explanation:

Heron's formula for area of triangle is:

A = sqrt(s(s-a)(s-b)(s-c)A=s(sa)(sb)(sc), where ss is the semi-pertimeter.

=>s=(a+b+c)/2s=a+b+c2

Here, a=14a=14, b=16b=16 and c=17c=17.

First find ss:

s=(a+b+c)/2s=a+b+c2

=(14+16+17)/2=47/2=14+16+172=472

Now to calculate the area:

A = sqrt(s(s-a)(s-b)(s-c)A=s(sa)(sb)(sc)

= sqrt(47/2(47/2-14)(47/2-16)(47/2-17)=472(47214)(47216)(47217)

= sqrt(47/2((47-28)/2)((47-32)/2)((47-34)/2)=472(47282)(47322)(47342)

= sqrt(47/2(19/2)(15/2)(13/2)=472(192)(152)(132)

=sqrt((47xx19xx15xx13)/16)=47×19×15×1316

=1/4sqrt(47xx19xx15xx13)=1447×19×15×13

=1/4sqrt(174135)=14174135

=1/4xx417.294=14×417.294

=104.324=104.324