How do you use Heron's formula to find the area of a triangle with sides of lengths #12 #, #6 #, and #11 #?

1 Answer

Area #=32.83957217" "#square units

Explanation:

let sides #a=12# and #b=6# and #c=11#

compute half the perimeter #s=(a+b+c)/2#

#s=(12+6+11)/2=14.5#

The Heron's Formula for area of the triangle

Area #=sqrt(s(s-a)(s-b)(s-c))#

Area #=sqrt(14.5(14.5-12)(14.5-6)(14.5-11))#

Area #=32.83957217" "#square units

God bless....I hope the explanation is useful.