How do you use Heron's formula to find the area of a triangle with sides of lengths 14 14, 9 9, and 13 13?

1 Answer
May 27, 2018

color(blue)("Area"=18sqrt(10)" square units")Area=1810 square units

Explanation:

Heron's Formula is given as:

"Area=sqrt(s(s-a)(s-b)(s-c))Area=s(sa)(sb)(sc)

Where a, b and ca,bandc are the lengths of the triangles sides.

s="semiperimeter"=(a+b+c)/2s=semiperimeter=a+b+c2

Let: a=14a=14, b=13b=13. c=9c=9

Then:

s=(14+13+9)/2=s=14+13+92=18

"Area"=sqrt(18(18-14)(18-13)(18-9))Area=18(1814)(1813)(189)

\ \ \ \ \ \ \ \ \ =sqrt(18(4)(5)(9)

\ \ \ \ \ \ \ \ \ =sqrt(3240)=18sqrt(10) square units