How do you use rotation of axes to identify and sketch the curve of sqrt3xy+y^2=1?

1 Answer
Aug 27, 2016

3/2X^2-Y^2 = 1

Explanation:

This quadratic can be written as

p.M.p^T = 1

where

p = (x,y) and M = ((0,sqrt(3)/2),(sqrt(3)/2,1))

Choosing a rotation given by

R(theta) = ((Costheta, -Sintheta),(Sintheta, Costheta))

and a new set of coordinates

P = (X,Y)=p.R(theta) then

P.R^(-1)(theta).M.R(theta).P^T = 1

with

R^(-1)(theta).M.R(theta) = ((Sintheta (-sqrt[3] Costheta + Sintheta), 1/2 (sqrt[3] Cos(2theta) - Sin(2 theta))),(1/ 2 (sqrt[3] Cos(2theta) - Sin(2 theta)), Cos theta (Costheta + sqrt[3] Sintheta)))

Choosing theta such that

1/2 (sqrt[3] Cos(2theta) - Sin(2 theta))=0 for

theta =-pi/3 or theta = pi/6

we have

3/2X^2-Y^2 = 1

which is a hyperbola.