How do you use the discriminant to classify the conic section 4x^2 + 32x - 10y + 85 = 0?

1 Answer
Nov 14, 2016

The equation represents a parabola.

Explanation:

Comparing this equation to

Ax^2+Bxy+Cy^2+Dx+Ey+F=0

4x^2+32x-10y+85=0

A=4

B=0

C=0

D=32

E=-10

F=85

We calculate the discriminant

Delta=B^2-4AC=0-4*4*0=0

As Delta=0, this equation represents a parabola.

If Delta<0, it's an ellipse

If Delta>0, it's a hyperbola

graph{4x^2+32x-10y+85=0 [-19.6, 20.93, -3.2, 17.08]}