How do you use the half angle formulas to determine the exact values of sine, cosine, and tangent of the angle pi/12?

1 Answer
Aug 6, 2017

1/2sqrt(2-sqrt3),1/2sqrt(2+sqrt3),sqrt(7-4sqrt3)

Explanation:

"since "pi/12" is in the first quadrant all of the trig. ratios"
"will be positive"

•color(white)(x)sin(x/2)=+-sqrt((1-cosx)/2)

"here "(x/2)=pi/12rArrx=pi/6

sin(pi/12)=+sqrt((1-cos(pi/6))/2

color(white)(xxxxxx)=sqrt((1-sqrt3/2)/2

color(white)(xxxxxx)=sqrt(((2-sqrt3))/4)=1/2sqrt(2-sqrt3)
color(blue)"---------------------------------------------------------"

•color(white)(x)cos(x/2)=+-sqrt((1+cosx)/2)

cos(pi/12)=+sqrt((1+cos(pi/6))/2)

color(white)(xxxxxx)=sqrt((2+sqrt3)/4)=1/2sqrt(2+sqrt3)
color(blue)"----------------------------------------------------------"

•color(white)(x)tan(x/2)=+-sqrt((1-cosx)/(1+cosx))

tan(pi/12)=+sqrt((2-sqrt3)/(2+sqrt3))

"multiply the numerator/denominator by "(2-sqrt3)

rArrtan(pi/12)=sqrt(7-4sqrt3)