"since "pi/12" is in the first quadrant all of the trig. ratios"
"will be positive"
•color(white)(x)sin(x/2)=+-sqrt((1-cosx)/2)
"here "(x/2)=pi/12rArrx=pi/6
sin(pi/12)=+sqrt((1-cos(pi/6))/2
color(white)(xxxxxx)=sqrt((1-sqrt3/2)/2
color(white)(xxxxxx)=sqrt(((2-sqrt3))/4)=1/2sqrt(2-sqrt3)
color(blue)"---------------------------------------------------------"
•color(white)(x)cos(x/2)=+-sqrt((1+cosx)/2)
cos(pi/12)=+sqrt((1+cos(pi/6))/2)
color(white)(xxxxxx)=sqrt((2+sqrt3)/4)=1/2sqrt(2+sqrt3)
color(blue)"----------------------------------------------------------"
•color(white)(x)tan(x/2)=+-sqrt((1-cosx)/(1+cosx))
tan(pi/12)=+sqrt((2-sqrt3)/(2+sqrt3))
"multiply the numerator/denominator by "(2-sqrt3)
rArrtan(pi/12)=sqrt(7-4sqrt3)