How do you use the half-angle identity to find the exact value of cos (11pi/8)?

1 Answer
Aug 10, 2015

Find #cos ((11pi)/8)#

Ans:# -sqrt(2 - sqrt2)/2#

Explanation:

#cos ((11pi)/8) = cos ((3pi)/8 + pi) = -cos (3pi)/8#= cos t
Use trig identity: #cos 2t = 2cos^2 t - 1#
#cos 2t = cos ((6pi)/8) = cos ((3pi)/4) = -sqrt2/2#
#-sqrt2/2 = 2cos^2 t - 1#
#2cos^2 t = 1 -sqrt2/2 = (2 - sqrt2)/2#
#cos^2 t = (2 - sqrt2)/4#
#cos t = cos ((11pi)/8) = +- sqrt(2 - sqrt2)/2.#
Only the negative answer is accepted because the arc (11pi/8 is in Quadrant II.
#cos ((11pi)/8) = - sqrt(2 - sqrt2)/2#
Check by calculator.
#cos ((11pi)/8) = cos 247.5# deg = - 0.382
#- sqrt(2 - sqrt2)/2 =# - 0.382. Correct.