How do you use the half-angle identity to find the exact value of tan(7pi/8)?

1 Answer
Aug 4, 2015

find #tan ((7pi)/8)#

Ans:# 1 - sqrt2#

Explanation:

#tan ((7pi)/8) = tan (-pi/8 + pi) = tan (-pi/8) = - tan (pi/8)#
Call #tan (pi/8) = t#
#tan 2t = tan ((2pi)/8) = tan (pi/4) = 1#
Use trig identity: #tan 2t = 1 = (2t)/(1 - t^2)# -->Solve quadratic equation:

#t^2 + 2t - 1 = 0#
#D = d^2 = 4 + 4 = 8 #--> #d = +- 2sqrt2#
#t = -1 +- sqrt2#. Accept only positive answer:
#t = tan (pi/8) = (sqrt2 - 1)#

Finally:# tan ((7pi)/8) = - tan (pi/8) = 1 - sqrt2#