How do you use the integral test to determine if sum_(n=2)^oo 1/(nsqrtlnn)n=21nlnn from [2,oo)[2,) is convergent or divergent?

1 Answer
Nov 21, 2016

sum_(k=2)^n1/(k log_e(k))nk=21kloge(k) is divergent

Explanation:

Calling f(x)=1/(x log_e(x))f(x)=1xloge(x) we have that

int_2^n f(x)dx le sum_(k=2)^n1/(k log_e(k))n2f(x)dxnk=21kloge(k) and

int_2^n f(x)dx=log_e((log_e n)/(log_e 2))n2f(x)dx=loge(logenloge2) but

lim_(n->oo)log_e(n)=oo so

lim_(n->oo)sum_(k=2)^n1/(k log_e(k))=oo