How do you use the integral test to determine if sum_(n=2)^oo 1/(nsqrtlnn)∞∑n=21n√lnn from [2,oo)[2,∞) is convergent or divergent? Calculus Tests of Convergence / Divergence Integral Test for Convergence of an Infinite Series 1 Answer Cesareo R. Nov 21, 2016 sum_(k=2)^n1/(k log_e(k))n∑k=21kloge(k) is divergent Explanation: Calling f(x)=1/(x log_e(x))f(x)=1xloge(x) we have that int_2^n f(x)dx le sum_(k=2)^n1/(k log_e(k))∫n2f(x)dx≤n∑k=21kloge(k) and int_2^n f(x)dx=log_e((log_e n)/(log_e 2))∫n2f(x)dx=loge(logenloge2) but lim_(n->oo)log_e(n)=oo so lim_(n->oo)sum_(k=2)^n1/(k log_e(k))=oo Answer link Related questions What is the Integral Test for Convergence of an Infinite Series? How do you know when to use the integral test for an infinite series? How do you use the Integral test on the infinite series sum_(n=1)^oo1/root5(n) ? How do you use the Integral test on the infinite series sum_(n=1)^oo1/n^5 ? How do you use the Integral test on the infinite series sum_(n=1)^oo1/(2n+1)^3 ? How do you use the Integral test on the infinite series sum_(n=1)^oo1/sqrt(n+4) ? How do you determine if the series ln(1/2) + ln(1/3) + ln(3/4) + ... +ln[k/(k + 1)] + .... converges? How do you know {-1,1,-1,1,-1,1,...} converges or diverges? Using the integral test, how do you show whether (1 + (1/x))^x diverges or converges? Using the integral test, how do you show whether sum 1/(n^2+1) diverges or converges from n=1... See all questions in Integral Test for Convergence of an Infinite Series Impact of this question 1977 views around the world You can reuse this answer Creative Commons License