#x^2-x=-1#
#rArrx^2-x+1=0#
We have to factorize
#color(brown)(x^2-x+1)#
Since we can not use polynomial identities so we will calculate #color(blue)(delta)#
#color(blue)(delta=b^2-4ac)#
#delta=(-1)^2-4(1)(1)=-3<0#
NO ROOTS IN #color(red)(x !in RR)# because #color(red)(delta<0)#
But roots exist in #CC#
#color(blue)(delta=3i^2)#
Roots are
#x_1=(-b+sqrtdelta)/(2a)=(1+sqrt(3i^2))/2=(1+isqrt3)/2#
#x_2=(-b-sqrtdelta)/(2a)=(1-sqrt(3i^2))/2=(1-isqrt3)/2#
The equation is:
#x^2-x+1=0#
#rArr(x-(1+isqrt3)/2)(x-(1-isqrt3)/2)=0#
#(x-(1+isqrt3)/2)=0rArrcolor(brown)( x=(1+isqrt3)/2)#
OR
#(x-(1-isqrt3)/2)=0rArrcolor(brown)(x=(1-isqrt3)/2)#
So the roots exist only in #color(red)(x in CC)#