How do you use the quadratic formula to solve the equation, x^2-x= -1x2x=1?

1 Answer
Oct 18, 2016

NO ROOTS in x !in RR
ROOTS x in CC
x=(1+isqrt3)/2
OR
x=(1-isqrt3)/2

Explanation:

x^2-x=-1
rArrx^2-x+1=0
We have to factorize
color(brown)(x^2-x+1)
Since we can not use polynomial identities so we will calculate color(blue)(delta)

color(blue)(delta=b^2-4ac)
delta=(-1)^2-4(1)(1)=-3<0

NO ROOTS IN color(red)(x !in RR) because color(red)(delta<0)

But roots exist in CC
color(blue)(delta=3i^2)

Roots are
x_1=(-b+sqrtdelta)/(2a)=(1+sqrt(3i^2))/2=(1+isqrt3)/2
x_2=(-b-sqrtdelta)/(2a)=(1-sqrt(3i^2))/2=(1-isqrt3)/2

The equation is:
x^2-x+1=0
rArr(x-(1+isqrt3)/2)(x-(1-isqrt3)/2)=0
(x-(1+isqrt3)/2)=0rArrcolor(brown)( x=(1+isqrt3)/2)
OR
(x-(1-isqrt3)/2)=0rArrcolor(brown)(x=(1-isqrt3)/2)

So the roots exist only in color(red)(x in CC)