How do you use the rational root theorem to list all possible rational roots?
1 Answer
See explanation...
Explanation:
Given a polynomial in the form:
#f(x) = a_0x^n + a_1x^(n-1) +...+ a_(n-1)x + a_n#
Any rational roots of
To list the possible rational roots, identify all of the possible integer factors of
For example, suppose
Then:
#a_n = 10# has factors#+-1# ,#+-2# ,#+-5# and#+-10# . (possible values of#p# )
#a_0 = 6# has factors#+-1# ,#+-2# ,#+-3# and#+-6# . (possible values of#q# )
Skip any combinations that have common factors (e.g.
#+-1/6# ,#+-1/3# ,#+-1/2# ,#+-2/3# ,#+-5/6# ,#+-1# ,#+-5/3# ,#+-2# ,#+-5/2# ,#+-10/3# ,#+-5# ,#+-10#