How do you use the rational roots theorem to find all possible zeros of f(x)=2x^3+7x^2+8x-8f(x)=2x3+7x2+8x−8?
1 Answer
Find
Use Cardano's method to find Real zero:
x_1 = 1/6(-7+root(3)(-593+12sqrt(2442))+root(3)(-593-12sqrt(2442)))x1=16(−7+3√−593+12√2442+3√−593−12√2442)
and related Complex zeros.
Explanation:
f(x) = 2x^3+7x^2+8x-8f(x)=2x3+7x2+8x−8
By the rational roots theorem, any rational zeros of
+-1/2, +-1, +-2, +-4, +-8±12,±1,±2,±4,±8
None of these works, so
We can find the irrational zeros using Cardano's method.
Descriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 3136-4096+10976-6912-16128 = -13024
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=108f(x)=216x^3+756x^2+864x-864
=(6x+7)^3-3(6x+7)-1186
=t^3-3t-1186
where
Cardano's method
We want to solve:
t^3-3t-1186=0
Let
Then:
u^3+v^3+3(uv-1)(u+v)-1186=0
Add the constraint
u^3+1/u^3-1186=0
Multiply through by
(u^3)^2-1186(u^3)+1=0
Use the quadratic formula to find:
u^3=(1186+-sqrt((-1186)^2-4(1)(1)))/(2*1)
=(-1186+-sqrt(1406596-4))/2
=(-1186+-sqrt(1406592))/2
=(-1186+-24sqrt(2442))/2
=-593+-12sqrt(2442)
Since this is Real and the derivation is symmetric in
t_1=root(3)(-593+12sqrt(2442))+root(3)((-593-12sqrt(2442))
and related Complex roots:
t_2=omega root(3)(-593+12sqrt(2442))+omega^2 root(3)(-593-12sqrt(2442))
t_3=omega^2 root(3)(-593+12sqrt(2442))+omega root(3)(-593-12sqrt(2442))
where
Now
x_1 = 1/6(-7+root(3)(-593+12sqrt(2442))+root(3)(-593-12sqrt(2442)))
x_2 = 1/6(-7+omega root(3)(-593+12sqrt(2442))+omega^2 root(3)(-593-12sqrt(2442)))
x_3 = 1/6(-7+omega^2 root(3)(-593+12sqrt(2442))+omega root(3)(-593-12sqrt(2442)))