How do you use the rational roots theorem to find all possible zeros of f(x) = 2x^3 + 8x^2 + 7x - 8?
1 Answer
x_1 = 1/6(-8+root(3)(-424+54sqrt(58))+root(3)(-424-54sqrt(58)))
and related Complex zeros.
Explanation:
f(x) = 2x^3+8x^2+7x-8
By the rational roots theorem, any rational zeros of
That means that the only possible rational zeros are:
+-1/2, +-1, +-2, +-4, +-8
None of these work, so we need other means to find the zeros:
Descriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 3136-2744+16384-6912-16128 = -6264
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=108f(x)=216x^3+864x^2+756x-864
=(6x+8)^3-66(6x+8)-848
=t^3-66t-848
where
Cardano's method
We want to solve:
t^3-66t-848=0
Let
Then:
u^3+v^3+3(uv-22)(u+v)-848=0
Add the constraint
u^3+10648/u^3-848=0
Multiply through by
(u^3)^2-848(u^3)+10648=0
Use the quadratic formula to find:
u^3=(848+-sqrt((-848)^2-4(1)(10648)))/(2*1)
=(-848+-sqrt(719104-42592))/2
=(-848+-sqrt(676512))/2
=(-848+-108sqrt(58))/2
=-424+-54sqrt(58)
Since this is Real and the derivation is symmetric in
t_1=root(3)(-424+54sqrt(58))+root(3)(-424-54sqrt(58))
and related Complex roots:
t_2=omega root(3)(-424+54sqrt(58))+omega^2 root(3)(-424-54sqrt(58))
t_3=omega^2 root(3)(-424+54sqrt(58))+omega root(3)(-424-54sqrt(58))
where
Now
x_1 = 1/6(-8+root(3)(-424+54sqrt(58))+root(3)(-424-54sqrt(58)))
x_2 = 1/6(-8+omega root(3)(-424+54sqrt(58))+omega^2 root(3)(-424-54sqrt(58)))
x_3 = 1/6(-8+omega^2 root(3)(-424+54sqrt(58))+omega root(3)(-424-54sqrt(58)))