How do you use the rational roots theorem to find all possible zeros of F(X) = 6x^4 + 2x^3 - 6x^2 + 3x - 5 ?
1 Answer
x_1 = 1/18(-8+root(3)(2510+54sqrt(2153))+root(3)(2510-54sqrt(2153)))
and two related Complex zeros.
Explanation:
F(x) = 6x^4+2x^3-6x^2+3x-5
By the rational root theorem, any rational zeros of
That means that the only possible rational zeros are:
+-1/6, +1/3, +-1/2, +-5/6, +-1, +-5/3, +-5/2, +-5
Notice that the sum of the coefficients of
F(1) = 6+2-6+3-5=0
So
6x^4+2x^3-6x^2+3x-5
=(x-1)(6x^3+8x^2+2x+5)
None of the remaining possible rational zeros work, so let's focus on the cubic:
f(x) = 6x^3+8x^2+2x+5
Descriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 256-192-10240-24300+8640 = -25836
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=972f(x)=5832x^3+7776x^2+1944x+4860
=(18x+8)^3-84(18x+8)+5020
=t^3-84t+5020
where
Cardano's method
We want to solve:
t^3-84t+5020=0
Let
Then:
u^3+v^3+3(uv-28)(u+v)+5020=0
Add the constraint
u^3+21952/u^3+5020=0
Multiply through by
(u^3)^2+5020(u^3)+21952=0
Use the quadratic formula to find:
u^3=(-5020+-sqrt((5020)^2-4(1)(21952)))/(2*1)
=(5020+-sqrt(25200400-87808))/2
=(5020+-sqrt(25112592))/2
=(5020+-108sqrt(2153))/2
=2510+-54sqrt(2153)
Since this is Real and the derivation is symmetric in
t_1=root(3)(2510+54sqrt(2153))+root(3)(2510-54sqrt(2153))
and related Complex roots:
t_2=omega root(3)(2510+54sqrt(2153))+omega^2 root(3)(2510-54sqrt(2153))
t_3=omega^2 root(3)(2510+54sqrt(2153))+omega root(3)(2510-54sqrt(2153))
where
Now
x_1 = 1/18(-8+root(3)(2510+54sqrt(2153))+root(3)(2510-54sqrt(2153)))
x_2 = 1/18(-8+omega root(3)(2510+54sqrt(2153))+omega^2 root(3)(2510-54sqrt(2153)))
x_3 = 1/18(-8+omega^2 root(3)(2510+54sqrt(2153))+omega root(3)(2510-54sqrt(2153)))