How do you use the rational roots theorem to find all possible zeros of f(x) = x^3 - 10x^2 + 9x - 24f(x)=x3−10x2+9x−24?
1 Answer
Find
x_1 = 1/3(10+root(3)(-919+18sqrt(1406))+root(3)(-919-18sqrt(1406)))x1=13(10+3√−919+18√1406+3√−919−18√1406)
and related Complex zeros.
Explanation:
f(x) = x^3-10x^2+9x-24f(x)=x3−10x2+9x−24
By the rational roots theorem, any rational zeros of
+-1, +-2, +-3, +-4, +-6, +-8, +-12, +-24±1,±2,±3,±4,±6,±8,±12,±24
In addition, using Descartes' rule of signs we find that
1, 2, 3, 4, 6, 8, 12, 241,2,3,4,6,8,12,24
None of these work, so
Descriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 8100-2916-96000-15552+38880 = -67488
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=27f(x)=27x^3-270x^2+243x-648
=(3x-10)^3-219(3x-10)-1838
=t^3-219t-1838
where
Cardano's method
We want to solve:
t^3-219t-1838=0
Let
Then:
u^3+v^3+3(uv-73)(u+v)-1838=0
Add the constraint
u^3+389017/u^3-1838=0
Multiply through by
(u^3)^2-1838(u^3)+389017=0
Use the quadratic formula to find:
u^3=(1838+-sqrt((-1838)^2-4(1)(389017)))/(2*1)
=(-1838+-sqrt(3378244-1556068))/2
=(-1838+-sqrt(1822176))/2
=(-1838+-36sqrt(1406))/2
=-919+-18sqrt(1406)
Since this is Real and the derivation is symmetric in
t_1=root(3)(-919+18sqrt(1406))+root(3)(-919-18sqrt(1406))
and related Complex roots:
t_2=omega root(3)(-919+18sqrt(1406))+omega^2 root(3)(-919-18sqrt(1406))
t_3=omega^2 root(3)(-919+18sqrt(1406))+omega root(3)(-919-18sqrt(1406))
where
Now
x_1 = 1/3(10+root(3)(-919+18sqrt(1406))+root(3)(-919-18sqrt(1406)))
x_2 = 1/3(10+omega root(3)(-919+18sqrt(1406))+omega^2 root(3)(-919-18sqrt(1406)))
x_3 = 1/3(10+omega^2 root(3)(-919+18sqrt(1406))+omega root(3)(-919-18sqrt(1406)))