How do you use the rational roots theorem to find all possible zeros of f(x)=x^4-8x^3+7x-14f(x)=x4−8x3+7x−14?
1 Answer
This
Explanation:
By the rational root theorem, any rational zeros of
+-1, +-2, +-7, +-14±1,±2,±7,±14
None of these work, so
Can we solve it using other methods?
Substitute
x^4-8x^3+7x-14x4−8x3+7x−14
=(x-2)^4-24(x-2)^2-57(x-2)-48=(x−2)4−24(x−2)2−57(x−2)−48
=t^4-24t^2-57t-48=t4−24t2−57t−48
=(t^2-at+b)(t^2+at+c)=(t2−at+b)(t2+at+c)
=t^4+(b+c-a^2)t^2+(b-c)at+bc=t4+(b+c−a2)t2+(b−c)at+bc
Equating coefficients and rearranging slightly, we get:
{ (b+c=a^2-24), (b-c=-57/a), (bc=-48) :}
Then:
(a^2-24)^2 = (b+c)^2 = (b-c)^2+4bc = (-57/a)^2-192
Expanding both ends, we get:
(a^2)^2-48(a^2)+576 = 3249/((a^2))-192
Add
0 = (a^2)^3-48(a^2)^2+768(a^2)-3249
= ((a^2)-16)^3+847
Hence one Real root gives us:
a^2 = 16-root(3)(847)
which is positive.
So we can let
Substituting this into the set of simultaneous equations, we get:
{ (b+c=a^2-24=(16-root(3)(847))-24 = -8-root(3)(847)), (b - c = -57/a = -57/sqrt(16-root(3)(847))), (bc = -48) :}
Add the first and second of these and divide by
b = -4 -1/2 root(3)(847) - 57/(2sqrt(16-root(3)(847)))
Subtract the second from the first and divide by
c = -4 -1/2 root(3)(847) + 57/(2sqrt(16-root(3)(847)))
So we now have two quadratics to solve:
t^2-(sqrt(16-root(3)(847)))t-(4+1/2 root(3)(847)+57/(2sqrt(16-root(3)(847)))) = 0
t^2+(sqrt(16-root(3)(847)))t-(4+1/2 root(3)(847)-57/(2sqrt(16-root(3)(847)))) = 0
We can solve these using the quadratic formula, then add
I will leave that as an exercise.