How do you use the rational roots theorem to find all possible zeros of y=2x^3+2x^2-23x-9y=2x3+2x2−23x−9?
1 Answer
Use a trigonometric method to find Real zeros:
x_n = 1/3(sqrt(142) cos(1/3 arccos((8sqrt(142))/2201) + (2npi)/3) - 1)xn=13(√142cos(13arccos(8√1422201)+2nπ3)−1)
for
Explanation:
f(x) = 2x^3+2x^2-23x-9f(x)=2x3+2x2−23x−9
Rational roots theorem
Any rational zeros of
So the only possible rational zeros are:
+-1/2, +-1, +-3/2, +-3, +-9/2, +-9±12,±1,±32,±3,±92,±9
None of these works, so
Discriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 2116+97336+288-8748+14904 = 105896
Since
As a result, pure algebraic methods like Cardano's method will yield results containing irreducible cube roots of Complex numbers. So choose to use a trigonometric solution instead.
Tschirnhaus transformation
First, simplify the cubic using a linear substitution:
108 f(x) = 216x^3+216x^2-2484x-972
=(6x+2)^3-426(6x+2)-128
=t^3-426t-128
where
Trigonometric solution
We want to solve:
t^3-426t-128 = 0
Consider the substitution:
t = k cos theta
Then:
t^3-426t-128
= k^3 cos^3 theta - 426 k cos theta - 128
= k^3/4 (4cos^3 theta) - 142k (3cos theta) - 128
Solve:
k^3/4 = 142k
to get:
k = +-2sqrt(142)
Let
0 = t^3-426t-128
= 284 sqrt(142)(4 cos^3theta - 3cos theta)-128
= 284 sqrt(142)cos(3 theta)-128
Hence:
cos(3 theta) = 128/(248sqrt(142)) = (8sqrt(142))/2201
Hence roots:
t_n =2 sqrt(142) cos(1/3 arccos((8sqrt(142))/2201) + (2npi)/3)
giving distinct values for
Then
x_n = 1/3(sqrt(142) cos(1/3 arccos((8sqrt(142))/2201) + (2npi)/3) - 1)
for