How do you use the sum to product formulas to write the sum or difference #sin(alpha+beta)-sin(alpha-beta)# as a product?

1 Answer
Jan 13, 2017

The answer is #=2cosalphasinbeta#

Explanation:

#sin(A+-B)=sinAcosB+-cosAsinB#

Therefore

#sin(alpha+beta)=sinalphacosbeta+cosalphasinbeta#

#sin(alpha-beta)=sinalphacosbeta-cosalphasinbeta#

#sin(alpha+beta)-sin(alpha-beta)=(sinalphacosbeta+cosalphasinbeta)-(sinalphacosbeta-cosalphasinbeta)#

#=cancel(sinalphacosbeta)+cosalphasinbeta-cancel(sinalphacosbeta)+cosalphasinbeta#

#=2cosalphasinbeta#