How do you verify #sin x + cos x = (2sin^2 x - 1) /(sin x -cos x)#?

2 Answers
Jul 9, 2016

#sinx + cosx =(2(1 - cos^2x) - 1)/(sinx - cosx)#

#sinx + cosx= (2 - 2cos^2x - 1)/(sinx - cosx#

#sinx + cosx = (1 - 2cos^2x)/(sinx - cosx)#

Here it looks like we're at a dead end, but in fact we're not.

#(sinx + cosx)(sinx - cosx) = 1 - 2cos^2x#

#sin^2x - cos^2x = 1 - 2cos^2x#

#1 - cos^2x - cos^2x = 1 - 2cos^2x#

#1 - 2cos^2x = 1 - 2cos^2x -> "Identity proved!"#

Hopefully this helps!

Jul 10, 2016

#RHS=(2sin^2x-1)/(sinx-cosx)#

#=(2sin^2x-(cos^2x+sin^2x))/(sinx-cosx)#

#=(2sin^2x-cos^2x -sin^2x)/(sinx-cosx)#

#=(sin^2x-cos^2x)/(sinx-cosx)#

#=((cancel(sinx-cosx))(sinx+cosx))/(cancel(sinx-cosx))#

#=(sinx+cosx)=LHS#