How do you verify the identity #(cos3beta)/cosbeta=1-4sin^2beta#?
2 Answers
Use the sum formula
LHS:
#(cos2betacosbeta - sin2betasinbeta)/cosbeta#
Expand using the identities
#((2cos^2beta- 1)cosbeta - (2sinbetacosbeta)sin beta)/cosbeta#
#(2cos^3beta - cosbeta - 2sin^2betacosbeta)/cosbeta#
Use
#(2cos^3beta - cosbeta - 2(1 - cos^2beta)cosbeta)/cosbeta#
#(2cos^3beta - cosbeta - 2(cosbeta - cos^3beta))/cosbeta#
#(2cos^3beta - cosbeta - 2cosbeta + 2cos^3beta)/cosbeta#
#(4cos^3beta - 3cosbeta)/cosbeta#
#(cosbeta(4cos^2beta - 3))/cosbeta#
#4cos^2beta - 3#
Switch into sine now using
#4(1 - sin^2beta) - 3#
#4 - 4sin^2beta - 3#
#1 - 4sin^2beta#
Since the
Hopefully this helps!
See the Proof in the Explanation Section.
Explanation:
We will need
Since,
Enjoy Maths.!