How do you verify the identity #(cos3beta)/cosbeta=1-4sin^2beta#?

2 Answers
Jan 14, 2017

#cos(3beta) = cos(2beta + beta)#.

Use the sum formula #cos(A + B) = cosAcosB - sinAsinB# to expand:

LHS:

#(cos2betacosbeta - sin2betasinbeta)/cosbeta#

Expand using the identities #cos2x = 2cos^2x - 1# and #sin2x = 2sinxcosx#:

#((2cos^2beta- 1)cosbeta - (2sinbetacosbeta)sin beta)/cosbeta#

#(2cos^3beta - cosbeta - 2sin^2betacosbeta)/cosbeta#

Use #sin^2x + cos^2x = 1#:

#(2cos^3beta - cosbeta - 2(1 - cos^2beta)cosbeta)/cosbeta#

#(2cos^3beta - cosbeta - 2(cosbeta - cos^3beta))/cosbeta#

#(2cos^3beta - cosbeta - 2cosbeta + 2cos^3beta)/cosbeta#

#(4cos^3beta - 3cosbeta)/cosbeta#

#(cosbeta(4cos^2beta - 3))/cosbeta#

#4cos^2beta - 3#

Switch into sine now using #cos^2x = 1 - sin^2x#:

#4(1 - sin^2beta) - 3#

#4 - 4sin^2beta - 3#

#1 - 4sin^2beta#

Since the #LHS# equals the #RHS#, we are done here.

Hopefully this helps!

Jan 14, 2017

See the Proof in the Explanation Section.

Explanation:

We will need #cos2beta=1-2sin^2beta#

#cos3beta=ul(cos3beta+cosbeta)-cosbeta.................(1)#

Since, #cosC+cosD=2cos((C+D)/2)cos((C-D)/2)#

#:.," from "(1), cos3beta=2cos2betacosbeta-cosbeta,#

#=(cosbeta)(2cos2beta-1),#

#=(cosbeta){2(1-2sin^2beta)-1}, i.e., #

#cos3beta=(cosbeta)(1-4sin^2beta),#

# rArr (cos3beta)/cosbeta=1-4sin^2beta#

Enjoy Maths.!