How do you verify the identity (cos3beta)/cosbeta=1-4sin^2beta?

2 Answers
Jan 14, 2017

cos(3beta) = cos(2beta + beta).

Use the sum formula cos(A + B) = cosAcosB - sinAsinB to expand:

LHS:

(cos2betacosbeta - sin2betasinbeta)/cosbeta

Expand using the identities cos2x = 2cos^2x - 1 and sin2x = 2sinxcosx:

((2cos^2beta- 1)cosbeta - (2sinbetacosbeta)sin beta)/cosbeta

(2cos^3beta - cosbeta - 2sin^2betacosbeta)/cosbeta

Use sin^2x + cos^2x = 1:

(2cos^3beta - cosbeta - 2(1 - cos^2beta)cosbeta)/cosbeta

(2cos^3beta - cosbeta - 2(cosbeta - cos^3beta))/cosbeta

(2cos^3beta - cosbeta - 2cosbeta + 2cos^3beta)/cosbeta

(4cos^3beta - 3cosbeta)/cosbeta

(cosbeta(4cos^2beta - 3))/cosbeta

4cos^2beta - 3

Switch into sine now using cos^2x = 1 - sin^2x:

4(1 - sin^2beta) - 3

4 - 4sin^2beta - 3

1 - 4sin^2beta

Since the LHS equals the RHS, we are done here.

Hopefully this helps!

Jan 14, 2017

See the Proof in the Explanation Section.

Explanation:

We will need cos2beta=1-2sin^2beta

cos3beta=ul(cos3beta+cosbeta)-cosbeta.................(1)

Since, cosC+cosD=2cos((C+D)/2)cos((C-D)/2)

:.," from "(1), cos3beta=2cos2betacosbeta-cosbeta,

=(cosbeta)(2cos2beta-1),

=(cosbeta){2(1-2sin^2beta)-1}, i.e.,

cos3beta=(cosbeta)(1-4sin^2beta),

rArr (cos3beta)/cosbeta=1-4sin^2beta

Enjoy Maths.!