How do you verify the identity (cos3beta)/cosbeta=1-4sin^2beta?
2 Answers
Use the sum formula
LHS:
(cos2betacosbeta - sin2betasinbeta)/cosbeta
Expand using the identities
((2cos^2beta- 1)cosbeta - (2sinbetacosbeta)sin beta)/cosbeta
(2cos^3beta - cosbeta - 2sin^2betacosbeta)/cosbeta
Use
(2cos^3beta - cosbeta - 2(1 - cos^2beta)cosbeta)/cosbeta
(2cos^3beta - cosbeta - 2(cosbeta - cos^3beta))/cosbeta
(2cos^3beta - cosbeta - 2cosbeta + 2cos^3beta)/cosbeta
(4cos^3beta - 3cosbeta)/cosbeta
(cosbeta(4cos^2beta - 3))/cosbeta
4cos^2beta - 3
Switch into sine now using
4(1 - sin^2beta) - 3
4 - 4sin^2beta - 3
1 - 4sin^2beta
Since the
Hopefully this helps!
See the Proof in the Explanation Section.
Explanation:
We will need
Since,
Enjoy Maths.!