How do you verify the identity #sin(pi/6+x)+sin(pi/6-x)=cosx#?

2 Answers
Feb 3, 2017

see explanation below

Explanation:

expand #sin(A+B)=sinAcosA+sin BcosA# and,
#sin(A-B)=sinAcosA-sin BcosA#

Therefore
#sin(pi/6+x) + sin(pi/6-x) # #= sin(pi/6)cosx + cancel (sinx cos(pi/6))+ sin(pi/6)cosx - cancel (sinx cos(pi/6))#

#= 2 sin(pi/6)cosx#, where #sin(pi/6) =1/2#

therefore,

#= 2 sin(pi/6)cosx=2(1/2)cos x = cos x#,

Feb 3, 2017

Explained below.

Explanation:

Expand the left hand side,

#(sin (pi/6) cos x + cos (pi/6) sinx) +(sin (pi/6) cosx - cos (pi/6) sin x)#

= #2 sin (pi/6) cos x#

=#2 (1/2)cos x#

= cos x = right hand side