How do you verify the identity (sintheta+costheta)^2-1=sin2theta(sinθ+cosθ)21=sin2θ?

2 Answers
Jan 22, 2017

See proof below

Explanation:

We need

sin^2theta+cos^2theta=1sin2θ+cos2θ=1

(a+b)^2=a^2+2ab+b^2(a+b)2=a2+2ab+b2

sin2theta=2sinthetacosthetasin2θ=2sinθcosθ

Therefore,

LHS=(costheta+sintheta)^2-1LHS=(cosθ+sinθ)21

=cos^2theta+sin^2theta+2sinthetacostheta-1=cos2θ+sin2θ+2sinθcosθ1

=1+2sinthetacostheta-1=1+2sinθcosθ1

=2sinthetacostheta=2sinθcosθ

=sin2theta=sin2θ

=RHS=RHS

QEDQED

Jan 22, 2017

cancel1+2 sinthetacostheta cancel-1=2sinthetacostheta
and the identity is verified.

Explanation:

Since

sin2theta=2sinthetacostheta,

you can substitute it in the given expression and expand the square of the bynomial:

color(red)(sin^2theta+cos^2theta+2sinthetacostheta)-1 =color(green)(2 sinthetacostheta)

Then, since

sin^2theta+cos^2theta=1, you get:

cancel1+2 sinthetacostheta cancel-1=2sinthetacostheta

and the identity is verified.