How do you write #3X=4-3X^2# in vertex form?
1 Answer
Jun 28, 2017
Explanation:
#"the equation of a parabola in "color(blue)"vertex form"# is.
#color(red)(bar(ul(color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.
#"the equation of a parabola in standard form " ax^2+bx+c#
#"has the x-coordinate of the vertex at " x_(color(red)"vertex")=-b/(2a)#
#"rearrange " 3x=4-3x^2" into this form"#
#rArr3x^2+3x-4rArry=3x^2+3x-4#
#"with " a=3,b=3" and " c=-4#
#rArrx_(color(red)"vertex")=-3/(6)=-1/2#
#"substitute this value into the standard form for y"#
#rArry_(color(red)"vertex")=3(-1/2)^2+3(1/2)-4=-19/4#
#rArrcolor(magenta)"vertex "=(-1/2,-19/4)#
#rArry=3(x+1/2)^2-19/4larrcolor(red)" in vertex form"#