How do you write a polynomial function given the real zeroes 3-i,5i and coefficient 1?

1 Answer
Jan 10, 2016

y=x^4-6x^3+35x^2-150x+250

Explanation:

Complex roots always come in pairs.

3-i will be a 0, but so will 3+i.

5i will be a 0, but so will -5i.

This gives us the function

y=(x-(3-i))(x-(3+i))(x-5i)(x-(-5i))

y=(x-3+i)(x-3-i)(x-5i)(x+5i)

y=((x-3)+i)((x-3)-i)(x^2-25i^2)

y=((x-3)^2-i^2)(x^2+25)

y=(x^2-6x+9+1)(x^2+25)

y=(x^2-6x+10)(x^2+25)

y=x^4-6x^3+35x^2-150x+250

Notice how the function only has imaginary roots (never crosses the x-axis):

graph{x^4-6x^3+35x^2-150x+250 [-5, 8, -36, 300]}