How do you write a polynomial function in standard form with zeros at -6, 2, and 5?

1 Answer
Aug 2, 2018

x^3-x^2-32x+60x3x232x+60

Explanation:

If alpha,betaα,β and gammaγ are the zeros,

the polynomial function is (x-alpha)(x-beta)(x-gamma)(xα)(xβ)(xγ)

Hence, for zeros -6,26,2 and 55 polynomial function is

(x-(-6))(x-2)(x-5)(x(6))(x2)(x5)

= (x+6)(x^2-5x-2x+10)(x+6)(x25x2x+10)

= (x+6)(x^2-7x+10)(x+6)(x27x+10)

= x^3-7x^2+10x+6x^2-42x+60x37x2+10x+6x242x+60

= x^3-x^2-32x+60x3x232x+60