How do you write a polynomial in standard form given the zeros x=-4, 5. -1?

1 Answer
May 26, 2016

x^3-21x-20=0x321x20=0

Explanation:

If {alpha,beta,gamma,delta,..}{α,β,γ,δ,..} are the zeros of a function, then the function is

(x-alpha)(x-beta)(x-gamma)(x-delta)...=0

Here zeros are -4, 5) and -1, hence function is

(x-(-4))(x-5)(x-(-1))=0 or

(x+4)(x-5)(x+1)=0 or

(x^2+4x-5x-20)(x+1)=0 or

(x^2-x-20)(x+1)=0 or

x^3-x^2-20x+x^2-x-20=0 or

x^3-21x-20=0