How do you write a polynomial in standard form given zeros 1 (multiplicity 2), -2 (multiplicity 3)?

1 Answer
May 26, 2016

x^5+4x^4+x^3-10x^2-4x+8=0

Explanation:

If {alpha,beta,gamma,delta,..} are the zeros of a function, then the function is

(x-alpha)(x-beta)(x-gamma)(x-delta)...=0

Here zeros are 1 (multiplicity 2) and -2 (multiplicity 3), hence function is

(x-1)(x-1)(x+2)(x+2)(x+2)=0 or

(x-1)^2(x+2)^3=0 or

(x^2-2x+1)(x^3+6x^2+12x+8)=0 or

x^2(x^3+6x^2+12x+8)-2x(x^3+6x^2+12x+8)+1(x^3+6x^2+12x+8)=0

x^5+6x^4+12x^3+8x^2-2x^4-12x^3-24x^2-16x+x^3+6x^2+12x+8=0

x^5+4x^4+x^3-10x^2-4x+8=0